Non-Markovian maximum likelihood estimation of autocorrelated movement processes
نویسندگان
چکیده
منابع مشابه
Maximum likelihood estimation of determinantal point processes
Determinantal point processes (DPPs) have wide-ranging applications in machine learning, where they are used to enforce the notion of diversity in subset selection problems. Many estimators have been proposed, but surprisingly the basic properties of the maximum likelihood estimator (MLE) have received little attention. The difficulty is that it is a non-concave maximization problem, and such f...
متن کاملMaximum Likelihood Estimation of Hidden Markov Processes
We consider the process dYt = utdt + dWt; where u is a process not necessarily adapted to FY (the ...ltration generated by the process Y ) and W is a Brownian Motion. We obtain a general representation for the likelihood ratio of the law of the Y process relative to Brownian measure. This representation involves only one basic ...lter (expectation of u conditional on observed process Y ): This ...
متن کاملParameter Estimation via Gaussian Processes and Maximum Likelihood Estimation
Computer models usually have a variety of parameters that can (and need to) be tuned so that the model better reflects reality. This problem is called calibration and is an inverse problem. We assume that we have a set of observed responses to given inputs in a physical system and a computer model that depends on parameters that models the physical system being studied. It is often the case tha...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملNon-Markovianmaximum likelihood estimation of autocorrelatedmovement processes
1 By viewing animal movement paths as realizations of a continuous stochastic process, we introduce a rigorous likelihood method for estimating the statistical parameters of movement processes. This method makes no assumption of a hiddenMarkov property, places no special emphasis on the sampling rate, is insensitive to irregular sampling and data gaps, can produce reasonable estimates with limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods in Ecology and Evolution
سال: 2014
ISSN: 2041-210X
DOI: 10.1111/2041-210x.12176